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Empirical Methods To Compensate for a 
View-Angle-Dependent Brightness 
Gradient in AVIRIS Imagery 

Robert E. Kennedy,’ Warren B. Cohen,! and Gen Takao: 

A view-angle-dependent brightness gradient was ob- 
.served in an AVlRlS image of a forested region in Ore- 
gon’,s Cascade Mountains. A method of removing the 
view-angle efleect was sought that would not alter the ra- 
diametric integrity (If the image, and which would re- 
quire minimal ancillary information. Four methods were 
tested and evaluated in terms of remaining brightness 
gradient and in terms of retention (If spectral charac- 
teristics. All m&hods used a quadratic fitting equation to 
model the changes in brightness across view angles. 
Other descriptive coe$cients were calculated to aid in 
inteqxetation. 2’1 le observed view-angle eflect varied 
with wavelength in a manner consistent with predictions 
of bidirectional r$ectance distribution function charac- 
teristics @r vegetation. L’iew-angle effects were deter- 
mined to contain both additive and multiplicative compo- 
nents, with multiplicative component,s being strong in the 
chlorophyll ab.sorytion region. The vim-angle effect in a 
given pixel was a ftrnction of both an underlying view- 
angle re,spon.se rle&minetl by .sur&e .structure and the 
inherent brightness of that ‘pixel. The nmst .succe.ssful 
corn~~c!n.sation nwthod was the one that best accounted 

.f t dl$L*.,bt or lroa c a trx ricer e ween pixels in these two compo- 
nent.s. Despite the simplifying assumptions necessamj for 
empirical ciewcmgle correc,fion techniqws, they can still 
be u.svfi~1 for h~~perspectrd remote-sensing data in situcr- 
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INTRODUCTION 

The Airborne Visible Infrared Imaging Spectrometer 
(AVIRIS) was designed to capture subtie spectral fea- 
tures of ground targets using narrow spectral bandwidths 
and full-spectrum (0.48-2.50 pm) coverage (Vane et al., 
1993). One proposed use has been the discrimination of 
tree species by detection of canopy chemistry signatures 
(Martin, 1994; Martin et al., 1996). A study was begun 
to investigate the feasibility of using AVIRIS data to dis- 
criminate species in coniferous forests of the Cascade 
Mountains of western Oregon. During preprocessing, 
however, a strong brightness gradient was observed that 
spanned the cross-track dimension of the image, and 
which was associated with variation in sensor view-angle 
rather than with a surficial trend or patterning of land- 
scape types (Fig. 1). Concerned that the low-amplitude 
spectral features necessary for species discrimination 
would be masked, we sought a generally applicable 
method of correction that would minimize the brightness 
gradient in AVIRIS data while retaining the lmderlying 
spectral information. As a preprocessing step, such a cor- 
rection method would ideally require little or no collec- 
tion of ancillary information. 

BACKGROUND 

Compensating for Brightness Effects 

Theo i-y 
Radiometric distortions may be eliminated by modeling 
of first principles, by applying a band ratio, or by apply- 
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ing ;I scene-dependent enipirical correction (Irons and 
Labitx, 1982; Leckir, 1987). The fanner is often in- 
practical fbr investigations where charactrrizatioii of the 
rffbct is not the final goal. The second option has proveIl 
usetid ill reducing such effects (Nalepka ant1 Morgtw- 
stern, 1972: Royer et al., 1985; Kleman, 198i; Qi ct al.. 
I995), but was not desirable in this study because the 
original spectral charactrristics were desird as output 
for other analyst~s. Thus an eqirical route was clwsw~. 

Eqiricwl methods seek to lninilnize the distortions, 
which are a fiinction of many factors, such as sensor view- 
anglr and altit&, wavelength, and the angle between 
sini aximrith and xlnsor scan plane (Irons and Labovitz, 
1982: Royer rt al., 1985: Irons et al.. 1987; Klema~l, 



Leckie, IYS7), but there is disagreement about which 
technique is more appropriate. The multiplicative ap- 
proach will compress the standard deviation of radiance 
at a given Q in proportion to the size of k,(a). If standard 
deviation is assumed to be unrelated to mean radiance, 
then the standard deviation compression caused by the 
multiplicative approach will introduce unwanted error 
and sho111d thus hr avoided (Irons and Labovitz, 1982). 
If standard deviation is assumed to be directly propor- 
tional to mean radiance, however, then standard devia- 
tion of radiance should be compressed and the additi\,r 
approach should be avoided (Royer et al., 19XTj). Neither 
assumption has brrii tested in the context of applying an 
empirical \iew-angle compensation. 

BRDF Considerations 

Before a mathematical correction procedure is applied, 
a choice must be made about the population of pixels 
from which to draw the mean radiance for each view- 
angle, i(a). Sincci the BRDF component of the view- 
angle raff’ect is dependent on the type of surface being 
viewed (Kricbel. 19’78: Cihlar et al., 1994; Deering et al.. 
1994), a separate fitting equation [ Eq. (l)] is expected 
for each t\pcx of slu-face colnponent. Applying the fitting 
eqilation iioni one siirfice type to another surf&e type 
WI result in inaccurate compensation (Leckie, 19%‘). the 
severitv of which would increase as the difference in 
BRDF between sllrface typcas increases. This can be alle- 
viated by limiting research to one type of surface (Treitz 
et al., 19X-5; Leckie, 1987; Johnson, 1994), or bv parti- 
tioning the image into classes and treating each class sep- 
arately (Leckie cht al., 1995). Unless extensive measure- 
ments are used to calcl&te BRDF characteristics for all 
scene conq~onrnts (Hugli and Frei, 1981), pre-classifica- 
tion must be based on theoretical assumptions. 

As no sing1e empirical view-angle compensation method 
is without drawbacks, we decided to test selreral methods 
for our study ar(~ m’e expected that the study area 
would accentuate, diff&encc,s between methods, since it 
contained an intimate mixture of surface types with theo- 
retic&l extrenre differences in BRDF (i.e.. bare-grom~d 
and regrowing clearcuts in a matrix of mature and old- 
growth coniferous fi)rest). In the course of testing meth- 
ods, it was 1~01~~~1 that thrb high spectral resolution of 
AVIRIS would coIltribute to genera1 understanding of 
the wavelength tlq~iideiic~~ of view-angle ckffects. 

DATA ANALYSIS 

Preprocessing 

The AVIRIS instrument is a hyperspectral, airborne, 
whisk-broom type sensor (Vane et al., 1993). Radiance in 
2% c.orlti(yuous w;t\-ehancls is recorded simultaneouslv for 

each pixel in an image. Waveband centers are approxi- 

mately 10 nm apart, running from 0.48 pm to 2.5 pm. 
The maximum view-angle from nadir is 15.0”. Pixels rep- 
resented an area on the ground approximatelv 18 in on 
a sic e. 1 

Atmospheric effects were addressed with ATREM 
(ATmospheric REMoval program for AVIRIS data; Gao 
et al., 1993). using aerosol optical thickness estimates 
from sun photometer readings taken at the site on the 
day of image acquisition. Because no ground-based spec- 
tromet-er measurements were available for validation, ap- 
parent surface reflectance derived from ATREM was ac- 
knowledged to be only an approxiniation of true 
reflectance. ATREM does not correct view-angle effects. 

From the, 224 wavebands of the i\VIRIS data, 154 
wa\-eband images were selected that did not display wa- 
ter vapor absorption noise or detector noise problems. In 
each waveband, the image had 1288 scan lines with 614 
scan angles per scan line. Each scan angle was assigned 
it colutmi value: each scan line was assigned a row value. 
The brightness effcact stretched across dimension of the 
RI4 cohlmns (Fig. 1). 

Study Area and Illumination Geometry 

A\‘IRIS imagery included the H. J. Andrews Experimen- 
tal Forest and adjacent areas (Table 1). The area is char- 
actrxrized by rugged topography having an intimate mix- 
turca of high and low biomass densities: old-growth 
coniferoils forests, with extremely high biomass (up to 
650~ 10” g C/ha above- and below-ground pools; Grier 
and L,ogan, 1977) and complex vertical and horizontal 
canopy structllre, juxtaposed to clearcuts, with little or 
no live biomass and significant exposed soil. 

Table 1 presents data relevant to slm and view-angle 
gr,ometry and aircraft directional characteristics for the 
dq of’ the image acquisition. The scanning plane was 

nearl> parallel to the plane of the Sam (Fig. 1). providing 
for maximunl predicted BRDF effects. 

View-Angle Compensation 

Sf mtqics To Hc Tmtetl 

A compensation strategy can use either additive or multi- 
plicative compensation, and can derive mean radiance ei- 
ther Ii-om the whole image or from classified subsets. 
From miique combinations of these options arose four 
\iew-angle compensation methods, named hereafter as 
the additive-unclassified, additive-classified, multiplica- 
ti\t,-llnclwssified. and multiplicative-classifiecl methods. 

For the two classified methods, the image was parti- 
tioned into broad “BRDF classes” chosen based on theo- 
retical expectations. In the system of study, two axes of 
variation were expected to cause variations in BRDF: 1) 
l)carcent of pixel dominated bv soil or vegetation (Nor- 



man et al., 1985; Ranson et al., 1985), and 2) degree of 
canopy heterogeneity within the vegetative canopies (Ii 
and Strahler, 1986; Kleman, 1987, although see Kimes et 
al., 1986 for context). Twenty classes were derived from 
an iterative optimization classification; these were then 
reduced to three classes along these two axes of varia- 
tion. Class 1 represented the soil-dominated areas in the 
image and was found exclusively in recent clearcuts arid 
burns. Classes 2 and 3 both occupied the vegetation- 
dominated portion of the soil-vegetation axis, but dif- 
fered in their canopy heterogeneity. Class 2 consisted of 
hardwood and young conifer that would appear relatively 
“smooth” within a given pixel element. Class 3 contained 
mature and old-growth conifer forests with significant 
canopy structural complexity at the scale of thr sensor 
pixrl 

For this image, 11.2% of the pixels were in Class 1, 
27.4% in Class 2, and 61.4% in Class 3. The categories 
were well distributed across the brightness gradient of 
the image. 

In both the additive- and the multiplicative-classified 
methods, each of the three classes was treated separately 
for all of the following view-angle compensation meth- 
ods. At the end of the compensation process, the three 
groups were recombined into a single image. For both 
of the unclassified image methods, all of the following 
methods apply. 

Fitting the Mean Rejectance Cume and 

Cnlcdating Interpretive Coe@&ent.s 

For ease of interpretation, pixel reflectance values as cd- 
c&ted by ATREM were used in place of radiance for 
Eqs. (l)-(5) 1 ajove. A preliminary test showed that 
ATREM had no effect on view-angle characteristics. 

Mean reflectances for the 614 columns were fit ac- 
cording to Eq. (1) f or all 154 wavebands using column 
number as a surrogate for view-angle (a). Coefficients of 
detrrrnination for the fit of the quadratic equation to the 
observed means were also calculated. 

In keeping with the goal of simplicity, the effects of 
autocorrelation between columns (Irons and Labovitz, 
1~82) and the potential for using higher-order or physi- 
cnlly basrd fitting equations were ignored (Irons and La- 

Thcx co&icients of Eq. (1) \v(‘r(J mar~ipulat~d to (*r(‘- 
ate two uew intrrpretivc~ coefficierlts. Thr first, named 
the nadir-adjlisted view-anglr curvatlm~. or (I’> was tlv- 
signed to allow comparison of curvaturr of’ tlirx view- 
angle effect (q) between hiu~ds. If f/ is proportional to 
tlic, mean brightness of ;I l~ind, tlierl comparisons 01’ f/ 
between wavebands could br affected more h! avcragc~ 
hand brightness than hy actual curvature of‘ the view- 
angle r,ffrct. To reducc3 this potential error atd aid in 
interpretation. q was divided hy the fitted III~~I reflex- 
tance at the iiadir (wlirre viewanglv effects arc zero) h 

each band, resulting in the co&cient ‘1’. A second intcr- 
pretive coefficicat was designed to track thca intc,ractions 
of two predicted URDF cff&ts (Kimrs. 1983; SW thr 
Discussion section fix ;l description). Thclir rrllati\.ca 
strengths alter the column at which quadratic equation 
[ Eq. (l)] imiclips its riiiniinlin~ predicted rc+kctancc~: 

-1 
s = 

:,I/>,/ 

2q 
(6 I 

A final pair of interpretive coefficients assessed the 
mathematical validity of using the multiplicativr or addi- 
tive approaches. For each of the 154 bands, 1ne;1n re- 
flectance for all pixels in each of the 614 colmnns was 
plotted against the standard deviation in reflectance val- 
ues for pixels in each of those cmlunins, and ;i simple 
least-squares regression linv was fit to the 614 data 
points. The slope of the regression line is designatrd as 
I~~~,,,/~/, / and the intercept as i,,,,,,,, ,. A positive slope with ;L 
zero intercept would indicate a strictly proportional 
(multiplicative) relationship between standard deviation 
of brightness and brightness. inlplying that the multipli- 
cative correction methods wart’ mathematically valid. A 
zero slope, with a nonzero intercept, would indicate no 
relationship between the standard deviation of brightness 
and brightness, and would support the use of an additive 
approach. Because brightness offsets introduced or WX- 
counted for by ATREM wrre unknown, neither HI,,,,~,~, 
nor liSr,iil l could be used iis a precision Ine;isi11-(‘1)1~~‘1it, hut 
rather as an indicator of trends. 

An additive compensation factor k,(x) and a multiplica- 
tive compensation factor k,(x) were calculated according 
to Eqs. (2) and (3), respectively, for x=1-614 cohunns. 
Images were corrected according to Eqs. (4) and (5) for 
the additive- and multiplicative-type corrections, respec- 
tively. For the two classified methods, only the compem 
sation factor appropriate to ;I given pixel’s RRDF class 
was applied to that pixel. 



Evaluation 
The methods were evaluated and compared against 
each 

1. 

2. 

other according to the following criteria: 

Did the image still display a noticeable brightness 
gradient? 
Was the spectral integrity of image data main- 
tained? 

The first test was a visual comparison of the spatial 
distribution of brightness before and after compensation. 
The compensation methods operate on a column-by- 
column basis; if average brightness compensation was 
achieved by overcompensating some rows within a col- 
umn while undercompensating other rows, then the 
compensation method was not useful. An image-wide 
comparison of all columns and rows would reveal pat- 
terns in over- or undercompensation. 

The second test evaluated whether spectral shape 
was preserved by the compensation procedures. Com- 
pensation was performed one band at a time, without 
reference to conditions in the preceding or subsequent 
waveband. Only if the brightness relationships between 
bands were maintained would the spectral information 
be preserved. T 0 examine spectral preservation, mean 
spectra for nine-pixel test regions at three view-angles 
along the brightness gradient were compared before and 
after compensation for all three BRDF classes. Spectra 
after compensation were compared against the original 
spectra for maintenance of low-frequency spectral fea- 
tures (general spectral shape). High-frequency spectral 
features were examined by comparing pseudo-first-deriv- 
atives of spectral response, calculated according to Mar- 
tin (19941. 

RESULTS 

Extracting and Fitting Brightness Curves 

As can be expected from a forested region, mean reflec- 
tames across wavelengths were dominated by the spec- 
tral signal of vegetation, with distinctive chlorophyll ab- 
sorption evident at 0.68 ,UIII, high reflectance in the near 
infrared, and intermediate reflectance in the 1.5-1.8 pm 
water absorption region (Fig. 2a). The fit of the qua- 
dratic equation to the observed mean reflectances across 
columns (Fig. 2b) was good, with r2 values greater than 
0.9 for all wavebands (data not shown). Interpretive coef- 
ficients follow the patterns described in the next section 
for Classes 2 and 3 of the classified image. 

Classified lrnuge 
For Classes 2 and 3 of the classified image, the spectral 
character of the coefficients q, q’, and x~,,,~,,~ appeared to 
be significantly related to vegetation (Figs. 3a, b, and c). 
The coefficient ‘1 takes the unmistakable shape of a ge- 
neric vegetation spectrum (Fig. 3a). The shapes of 9’ and 
.K,,,,,,,) (Figs. Z3b and c). while not strictly vegetative, are 

characterized by spectral features that correspond to 
wavelengths of critical vegetation features, especially the 
chlorophyll wavelengths (0.68 pm) and the red-near- 
infrared transition (0.68 pm to NO.90 ,LL~). The fact that 
the view-angle-dependent curvature existed within the 
vegetative classes reconfirms the observation that the 
brightness effect was related to view-angle, rather than 
to patterning of bright and dark classes on the landscape. 
The soil-dominated class (Class 1) behaved differently 
for all coefficients (Figs. 3a-c; note that s,,,,,,,) was mathe- 
matically uninterpretable where q approached zero). No- 
table is the shape of y ‘, which for (Ass 1 was a rough 
mirror-image from q’ from the two vegetative classes. 
The values of r’ for the fit of quadratic equation were 
uniformly high for the vegetative classes, but poorer for 
Class 1, especially at the chlorophyll absorption region 
and the two mid-infrared regions (Fig. 4). 

The relative strength of the additive and multiplica- 
tive assumptions, as indicated bv i,,,,,,,, , arid rr~,,,,/,~, ), respec- 
tively, aIso appeared to respond to absorption character- 
istics of vegetation, although they were quite variable 
between classes and across wavelengths (Fig. 5). A nota- 
ble point of agreement between the classes was a peak 
in the appropriateness of both the niultiplicative and ad- 
ditivc assumptions at the chlorophyll absorption rqion. 

Three major patterns emerged from the investigation of 
the interpretive coefficients: 

The character of the brightness gradient across 
wavelengths appeared to be connected to the spec- 
tral characteristics of vegetation. 
The brightness gradient in the soil-dominated 
class (Class 1) was quite different from the two 
vegetated classes. 
The strength of the multiplicative and additive as- 
sumptions varied with wavelength; both effects 
Were preSent t0 Vqing degJYYS at JllOSt WdVe- 

lengths. 

Evaluating the View-Angle Compensation Methods 

lloes the Resultant Image Retain CL Vi.&lr 
Brightrms Gradient.? 
Irr comparing images after application of the four com- 
pensation methods, seven representative wavebands were 
evaluated for image contrast and for distribution of 
brightness gradient among cover types. The classified 
methods performed better across bands than did the un- 
classified methods. For both the classified and unclassi- 
fied methods, the multiplicative versions performed bet- 
tcr than their additive counterparts. A cross-track subset 
of’ a green waveband image (0.55 pm) is used as a visual 
example, showing the original image (Fig. 6a) and images 
from all four of the compensation methods (Figs. 6b-e) 
displayctl according to the same brightness stretching 
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Figure 2. Reflectances by wavelength and image cohrmn nmnber for the 19 [uly 1994 AVIRIS 
image (a portion of which is shown in Fig. 1). Each column number corresponds to a different 
scan angle of the sensor; column numbers greater than 306 (the nadir point) are those where 
the sensor was aimed towards the sun. a) Mean image vahres taken from 1288 pixels at each 
column number. b) The values in a) fitted according to a quadratic equation [Eq. (I)], using 
column number as independent variable and mean reflectance as dependent variable. Each 
wavelength is fit separately. Reflectance values are calculated from raw data using ATREM 
(Cao et al., 1993). 



- 

0.0008-’ ” L ‘. . a ” ” L ‘. ” I ” ‘. n ” “- 

0.0006 y 

0.0004 7 

-_-- Class 3 
_-_ Class 2 
- Class 1 

0.0002 ; .’ ,+ 
/ ’ ,oe-x., c-_ 

/*. ‘-w-w. k -, 
0.0000 _ A I 

/ L 
-0.0002 - I I , .Tf. I . - 

0.0 0.5 1 .o 1.5 2.0 2.5 3.0 
Wavelength (pm) 

b) 3.oxlo-6 ’ ‘r- ’ . ’ i !’ 

I .-.r. J.! 
3% 

2.0x1 o-6 q! I y 

.!I?- 
’ a, 1.ox1o-6 

,-‘/ ,- 

05 
2!- 
v)a 32 0 n fi 
.7 / L u= 0 “-1.0x10 -6 

I\ 

.g=-2.0x10-6 I I I !T--Y!, 
1 a, 

06 Z 0.0 0.5 1 .o 1.5 2.0 2.5 3.0 
Wavelength (pm) 

c 
. . . . . . . _ _ _ _ _ _ . .N.w?.. . . . . _ _ . . . . . . _ _ . _ 

0 . . ..I. ..I....I....l....->....- 
0.0 0.5 1 .o 1.5 2.0 2.5 3.0 

Wavelength (pm) 

FQUW 3. Interpretive coefficients derived from the fit of the quadratic equation for Classes 
1, 2, and 3. a) The quadratic term C/ in the quadratic equation [Eq. (l)]. Higher 4 indicates 
a stronger view-angle effect. b) Nadir-adjusted view-angle curvature Q’ calculated by dividing 
~1 for a given band by fitted nadir reflectance in that band. This eliminates the effect of aver- 
age band reflectance, allowing direct comparison of view-angle effects between bands. c) 
The column number where the fitted quadratic equation reaches a minimum, x,,,,,,,,. Nadir is 
column 306; higher values are on the sun-side of nadir. Because the curvature (4) for Class 
1 drops below zero [see part a)], the mathematical assmnptions for the calculation of x,,,,,,,, 
are invalid for that class and cause s,,,,,,,, to vary outside the meaningful bounds of this plot. 

rules, along with the classified image for reference (Fig. problem, except in the two mid-infrared regions (not 
6f). The least effective method across bands was the ad- shown), where some undercompensation was evident. 
ditive-unclassified method, which consistently overcom- The two classified methods yielded well-balanced images, 
pensated for the brightness effect in Class 3. The multi- with high contrast and no patterns of inappropriate com- 
plicative-unclassified method generally alleviated this pensation. 
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Was Spectral Integrity Maintained in 
Reprmentative Test Regions.~ 
Spectra from Class 1, 2, and 3 test regions were com- 
pared before and after application of all four compensa- 
tion methods. Spectral pseudo-first-derivatives were nearly 
identical for all compensation methods (an example is 
shown in Fig. 7), indicating that fine-scale spectral fea- 
tures were well-maintained by all methods. Broad spec- 
tral features were also preserved for the test regions 
dominated by vegetation, including all of the test regions 
from Classes 2 and 3 (representative data for Class 2 
shown in Fig. 8) and two of the test regions from Class 
1 (not shown). The third test region from Class 1 was 
nearly pure soil and responded to the compensation 
methods in a manner unlike the other test regions (Fig. 
9). For this test region, no compensation method fully 
maintained spectral integrity, especially in the transition 
from the red to the near-infrared wavelengths, although 
the multiplicative-cla&ied method best maintained over- 
all spectral shape. 

DISCUSSION 

Context of the Study 

Because of its potential for improving canopy inversion 
models, the BRDF remains a subject of continued fruitful 
research, especially as the availability of variable look-angle 
sensors increases (Irons et al., 1991; Abuelgasim and 
Strahler, 1994). For single-pass, nadir-viewing instruments, 
however, the effects of BRDF and other view-angle ef- 
fects can hinder processing. Building on work by other 
investigators using other instruments, this study evalu- 
ated four related empirical methods of compensating for 
view-angle effects in AVIRIS imagery. The conclusions 
of this study will be useful for situations where the 
brightness gradient is severe enough to mask variation in 

mean rrflectances derived 

the original data, and where some means of compensa- 
tion is required that both will be efficient and will cause 
minimal radiometric distortion. 

Limitations and Potential Error Sources 

The methodologies tested here have several limitations 
and limiting assumptions. 

They compensate for view-angle effects only, not 
for sun-angle effects that would vary between im- 
ages acquired at different times. 
Although they brighten dark areas, they will not 
change the lower signal-to-noise ratio in dark 
areas. 
They make no explicit accounting for topogra- 
phy; however, there are no topographic features 
in this landscape that function at the scale of 
the swath-width of the sensor, so topographic ef- 
fects likely explained some variation around the 
general view-angle trend but not the trend itself. 
They assume that a quadratic curve is the appro- 
priate model for the brightness gradient; high r’ 
values indicate that this was a reasonable assump- 
tion except for Class 1, which will be discussed 
in the subsection on BRDF predictions below. 
The multiplicative methods require the zero 
point on the reflectance scale to be absolutely ac- 
curate; without ground measurements. this was 
not testable. 

Interpretation of View-Angle Effects 

General Observations 
From the investigation of the interpretive coefficients [y, 
$7 q,,,,,~), WL(,~~/,~~), i(,tclJ, several general trends are evident. 
First, all noticeable trends in the data appear to be related 
to vegetation’s spectral features, not to atmospheric path 
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Figure 5. Coefficients for determining whether the standard deviation of reflectance is dependent on 
mean reflectance. For the 614 columns in each waveband, the former was plotted against the latter, and 
a linear regression line was fit to the relationship. The slope mI,r,bki and y-intercept i(shMti for the linear 
regression line are shown by wavelength. A nonzero slope indicates that standard deviation is partiall) 
proportional to mean brightness. A nonzero y-intercept indicates that some portion of the standard devia- 
tion is independent of mean brightness. 

radiance effects, which are greatest in the blue wave- 
lengths and gradually decrease as wavelength increases 
(Leckie, 1987). Although path radiance is additive and 
may be responsible for the observed additive relationship 
in view-angle effects [ii,rc,,,t,,], it clearly does not explain 
the bulk of the behavior of the view-angle effect. Sec- 
ond, the curvature of the view-angle effect is strongest 
in spectral regions where vegetation strongly absorbs radi- 
ation, and is weakest where vegetation scatters and trans- 
mits radiation. Finally, Class 1, with minimal vegetation, 
behaves uniquely in its response to view-angle changes. All 
three of these observations point to surface BRDF as the 
primary determinant of the view-angle effect. 

BHDF 

view-angle increases from nadir, the probability of the 
sensor gaining a direct line of sight to dark, lower canopy 
components decreases, and the proportion of bright, up- 
per canopy components in view increases. This causes a 
minimum reflectance at nadir with symmetric curvilinear 
increases in reflectance as view-angle increases in both 
directions (i.e., a quadratic curve). We refer to it as Ef- 
fect 1. Effect 2 results from the sensor viewing forelit 
surfaces when looking away from the sun and viewing 
backlit surfaces when looking towards the sun. Unlike 
Effect 1, it causes a nearly linearly decreasing reflectance 
as view-angle moves from forelit to backlit surfaces. The 
combination of the two effects will produce a quadratic 
c~uve with a minimum point offset in the direction of 
backlighting, i.e. towards the sun. 

Kimes (1983) suggests that the BRDF for vegetated can- 
opies is defined hy the interaction of two effects. As 

In this study, the coefficients q’ and x,,,,,,,) are de- 
signed as indicators of Effect 1 and 2. The curvature 
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Figwc 7. Spectral first derivatives for an example test site before and after application of compensa- 
tion methods. The test site was from Class 2 on the forward scatter side of nadir (see Fig. 8c for 
associated spectra). There is essentially no difference between post-compensation and original-image 
first derivatives, indicating that fine-scale spectral information was retained by all compensation . 
methods. 

measured by 4’ should respond directly to Effect 1. The 
coefficient x~,,,,,,) measures the interactions between Ef- 
fects 1 and 2. As Effect 2 becomes stronger relative to 
the quadratic influence of Effect 1, the slope of its linear 
view-angle effect increases and the minimum point of 
the quadratic curve [X (,,J moves further from nadir. This 
may occur either when Effect 2 strengthens or when Ef- 
fect 1 weakens. Consequently, Effect 2 must be interpre- 
ted by examining trends in both q’ and n,,,,,,,,. 

Examining BRDF Predictions 
Using q’ and rjrrlini we can infer whether the predictions 
of Effect 1 and 2 adequately describe the brightness gra- 
dient. At wavelengths where canopy absorption is high, 
lower canopy components will be much darker than up- 
per canopy components, an d the higher contrast should 
accentuate Effect 1. Effect 2 should be driven by the 
relationship between leaf transmittance and reflectance: 
When leaf transmittance is low compared to reflectance, 
the backlit sides of leaves will be relatively dark, and Ef- 
fect 2 will be strong; when transmittance and reflectance 
are on a par, Effect 2 will be weaker. 

For vegetated classes (Classes 2 and 3) and for the 
unclassified image (with proportionally little soil), these 
predictions are accurate. Effect 1, as measured by cl’, is 
greater at wavelengths where vegetative absorption is 
higher [the chlorophyll region (0.68 pm) and the minor 
water absorption regions (1.5-1.8 pm)] and weaker 
where vegetative absorption is minimal [the near-infra- 
red region (9.80-1.1 pm); Fig. 3b]. Differences between 
reflectance and transmittance for conifers are relatively 
small at most wavelengths (Daughtry et al., 1989; Wil- 
liams, 1991), so the strength of Effect 2 should vary little 
across wavelengths. This appears to be the case here: Be- 
cause x,,,,,,,, changes in nearly direct opposition to ~1’ (Fig. 

3c), it appears that it is being altered strictly by changes 
in Effect 1 and that Effect 2 is relatively stable across 
wavelengths. 

In the sparse canopies of Class 1, Effect 1 would be 
expected to play a lesser role than Effect 2. The changes 
in brightness with view-angle are therefore poorly de- 
scribed by a quadratic fit (low P values, Fig. 4). Addition- 
ally, descriptive coefficients which assume a quadratic cur- 
vature, (y, y’, and r,,i,,), only describe that portion of the 
brightness gradient attributable to vegetation, making it 
impossible to say how well Effect 2 describes soil BRDF. 
Nevertheless, it is quite clear that BRDF in Class 1 is 
quite different from that in the vegetated classes. 

BRDF in Sparse verSus Dense Cnnopic~s 
The stark contrast in BRDF characteristics between 
Class 1 and the vegetated classes indicates that for this 
scene, at least, the soil-vegetation axis caused more dra- 
matic variations in BRDF than did the vegetative struc- 
tural complexity. This is consistent with the conclusion 
of Kimes et al. (1986) that homogenous closed canopies, 
whether forest or grassland, should manifest BRDF ef- 
fects that are similar to each other and different from 
soil-dominated regions of any type. 

Evaluation of Compensation Methods 

Validity of the Additive and Multiplicative 
Compensation Techniques 
The coefficients ~n(,,,~~,, and iis~~~~,~l were intended to mea- 
sure the validity of using the multiplicative or additive 
approaches. Their statistical robustness was questionable 
in Class 3 due to the presence of two distinct clusters of 
pixels in standard deviation/brightness space (not shown). 
Nevertheless, Class 1 and 2 did not show subclasses, but 
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Fi~w-e 8. Extracted spectra for test regions in the original image and in images resultant from all four com- 
pensation methods. Each spectrum represents the average from nine adjacent pixels. Plotted are spectra from 
Class 2 a) in the backscatter region of the image, b) near nadir, and c) in the forward scatter region of thr 
image. 
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Figure 9 Extracted spectra for a nearly-pure soil test region from Class 1. Note that all compen- 
sation methods fail to adequately maintain spectral shape in the 0.6-0.9 pm region. 

did display quite marked variations with wavelength in 
the magnitudes of both mrrtaO) and &,,dGj (Fig. 5). If data 
from those two categories are accepted as indicators of 
underlying view-angle properties, then it was evident 
that neither the assumptions of the additive nor multipli- 
cative compensation methods were exclusively valid 
across wavelengths. 

In the chlorophyll absorption region, the strength of 
a multiplicative relationship [rr~(,~,~~J rose (Fig. 5a) as the 
strength of Effect 1 (9’, Fig. 3b) increased, suggesting 
that Effect 1 may be a multiplicative effect. This sugges- 
tion is supported by the theory which states that Effect 
1 is driven by the difference in brightness between the 
upper and lower canopy. Because brightness in a canopy 
likely follows an exponential extinction rule, the bright- 
ness at a given depth in the canopy will always be related 
in a proportional manner to the brightness at the top of 
the canopy, and hence the strength of Effect 1 should 
also be proportional to the brightness at the top of the 
canopy. 

Comparing Re.dts from the Four Methods 
The compensation methods tested here represent four 
strategies to reduce error in reported radiance caused by 
view-angle-dependent phenomena. As has been shown in 
this study, the view-angle effect exhibited in a pixel in a 
given waveband image will depend on that pixel’s view- 
angle, its surface structure, and its brightness. We can 
express this conceptually in a simple formula: 

where v(a,t~) is the brightness effect for a particular 
pixel, b is some measure of that pixel’s inherent bright- 
ness, f&Ja) is a function describing the response to 
changes in view-angle for surface type equal to type at 
view-angle a, and C, ,,,,‘, is the additive component of view- 
angle effect for type. An ideal compensation method 

would account for all variations across an image b, j&a), 
and CtYpp. In practice, however, average values must be 
used, and thus error in compensation for a pixel will be 
determined by the separation between the averaged 
compensation factor and the true view-angle effect for 
that pixel. 

The four methods differ in how they average these 
values. For the additive methods tested here, b was an 
average value for the whole scene. Error in compensa- 
tion for a given pixel will increase as that pixel’s bright- 
ness increasingly departs from this average brightness. 
This error is especially evident in the minority soil-domi- 
nated class (Class 1) in this vegetation-dominated scene, 
but also appears in the vegetated classes because Class 
2 and 3 differed in average brightness. Multiplicative 
methods alleviate this problem by using the pixel’s start- 
ing brightness as an estimate of b. Therefore, the multi- 
plicative-unclassified method performed better than the 
additive-unclassified method, although Class 1 still suf- 
fered in the chlorophyll absorption region. 

The latter observation is explained by the averaging of 
j&(n) and C,,, in the multiplicative unclassified method. 
Unclassified methods treated the whole image as a single 
type. Because vegetation dominated the scene, bothf,,,(a) 
and Cty,,6, were average values heavily influenced by vegeta- 
tion When these were applied to Class 1, which showed 
unique view-angle responses in all of the interpretive co- 
efficients. the compensation was inaccurate. By classify- 
ing into three groups, the gross variations in f,,,,,(a) and 
c j,‘lPe were accounted for and the errors introduced from 
compensation were lessened. 

Because the multiplicative-classified method allowed 
the most variability in b, j&(u), and Cl,,,“., theoretically it 
should have been the most successful method. While this 
appears to be true, especially in the maintenance of 
spectral integrity, the distinctions were minimal between 
it and the additive-classified and multinlicative-unclassi- 



fic~l Ir Ic~thods. Only the ad(litive-uliclassi~~,(l nrc~thod dis- 
pla~yc~l I~latanrtl\~ inq~propriate brightness conrpenswtioil. 

Summary of Results 

(XvcJl1 tlrc rclsrilts of this study, several general statcl- 
lllrwts Cilll hc lllade dx~llt vie\v-angle IMl$htnc-ss effects: 

1. Sarfxe BRDF is the primary determinant of 
view-angle effects in this scene. In theoI?;, atmo- 
spheric path radiance should play some role; in- 
deed, the pi-eseiice of an additive component in 
the view-angle response hints at the presence of 
pat11 radiance. However, most of the wavelength- 
dependent changes in view-angle response are 
attributed to surface characteristics. 

2. Kimrs’ theory (Kimes, 19X3) of BRDF &scribes 
tlw view-angle responses. For closed vegetative 
canopies, Effect 1 dominates, and there is little 
variation between closed canopies of high and low 
structural complexity. For open or sparsely vege- 
tated canopies, Effect 2 dominates. 

3. In terms of view-angle compensation, the mani- 
f&ted . -< g,l view xi r e effect fbr a given surface is a 
f;mction of l&i the brightness of the surface and 
the magnitude of Effects 1 and 2 for that surf&, 
all of which v:u-)i considerably from surf&c to sur- 
fllCYJ. A successful compensation method will X- 
count for these variations across an image. al- 
though gross approximations appear to perform 
atlecpl”t’ly 

CONCLUSIONS 

For most of the surfaces involved in this study, the use of 
empirical view-angle compensation strategies appeared to 
unmask the information content in this vegetation-dom- 
nated scene. Because soil and vegetation have quite differ- 
ent BRDF effects, it is expected that this technique may 
be less effective in environments with substantial subpixel 
soil/vegetation mixing. 

Although several simplifjiing assumptions were needed 
to conduct this study, they do not appear to have prevented 
adequate view-angle brightness compensation. Inaccura- 
cies in curve-fitting caused by spatial autocorrelation, in- 
sufficient degrees of polynomial fitting, or inaccurate at- 
mospheric correction algorithms could not be quantified, 
but the success of the methods appeared to indicate that 
their role was subordinate to other factors. When used 
intelligently, then, these fairly simple empirical methods 
can he efficient preprocessing tools in situations where 
view-angle effects mask information content. 
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